[32]

S. Walters
The Kinductive Structure of the Noncommutative Fourier Transform
Math. Scand.
(2018), 15 pages, to appear.
Dedicated to Canada on her 150th birthday

[31]

S. Walters
Semiflat Orbifold Projections
Houston J. Math.
44 (2018), No. 2, 645663.
In Memory of Mom.

[30]

S. Walters
Orthogonality Relations And Topological Invariants Of Fourier Invariant Fields Of Projections
Jour. Operator Theory
77 (2017), No. 1, 191203.
Online Abstract

[29]

S. Walters
Projections Nearly Orthogonal To Their Symmetries
J. Math. Analysis Appl.
446 (2017), No. 2, 13561361.
DOI: http://dx.doi.org/10.1016/j.jmaa.2016.09.013

[28]

S. Walters
Toroidal Orbifolds of Z_{3} and Z_{6} Symmetries of Noncommutative Tori
Nuclear Physics B
894 (2015), 496526.
DOI: http://dx.doi.org/10.1016/j.nuclphysb.2015.03.008
Dedicated to George Elliott on his 70th birthday.

[27]

S. Walters
Periodic Integral Transforms and Associated Noncommutative Orbifold Projections
C. R. Math. Rep. Acad. Sci. Canada
37 (2015), No. 3, 114120.
Dedicated to George Elliott on his 70th birthday.

[26]

S. Walters
Cubic and Hexic Integral Transforms for Locally Compact Abelian Groups
C. R. Math. Rep. Acad. Sci. Canada
37 (2015), No. 4, 121130.

[25]

S. Walters
Topological Obstruction to Approximating the Irrational Rotation C*algebra by Certain Fourier Invariant C*subalgebras
C. R. Math. Rep. Acad. Sci. Canada
37 (2015), No. 3, 9499.

[24]

S. Walters
The Exact Tracial Rokhlin Property
Houston J. Math. 41 (2015), No. 1, 265272.

[23]

S. Walters
Decomposable projections related to the Fourier and flip automorphisms
Math. Scand. 107 (2010), 174197.

[22]

S. Echterhoff, W. Lueck, N. C. Phillips, and S. Walters
The structure of crossed products of irrational rotation algebras by finite subgroups of SL_{2}(Z),
J. Reine Angew. Math. (Crelle's Journal) 639 (2010), 173221. Available at arXiv: math.OA/0609784

[21]

J. Buck and S. Walters
Non commutative spheres associated with the hexic transform and their Ktheory,
J. Operator Theory
58 (2007), no.2, 441462.

[20]

J. Buck and S. Walters
ConnesChern characters of hexic and cubic modules,
J. Operator Theory
57 (2007), 3565. [Abstract] (Dedicated to
George Elliott on his 60th.)

[19]

S. Walters
On the inductive limit structure of order four automorphisms of the irrational rotation algebra,
Internat. J. Math. 17 (2006), no. 1, 107117. [Abstract]. (Dedicated to Paul
Milnes on his 60th.)

[18]

P. Milnes
and S. Walters
Discrete Cocompact
subgroups of G_{5,3} and related C*algebras,
Rocky
Mountain J. Math. 35 (2005), No. 5, 17651786. arXiv: math.OA/0105104. [Abstract].

[17]

S. Walters
Periodic Integral Transforms and C*algebras,
C. R. Math. Rep. Acad. Sci.
Canada 26
(2004), no. 2, 5561. arXiv: math.OA/0401340. [Abstract].

[16]

S. Walters
Fourier invariant partially approximating subalgebras of the irrational rotation algebra,
Proc. London Math. Soc.
88 (2004),
no. 3, 505525. arXiv: math.OA/0106053. [Abstract].

[15]

S. Walters
The AF structure of non commutative toroidal Z/4Z orbifolds,
J. Reine
Angew. Math. (Crelle's Journal) 568 (2004), 139196. arXiv: math.OA/0207239. [Abstract]. (Dedicated to my
Mother on her 70th.)

[14]

S. Walters
On Fourier orthogonal projections in the rotation
algebra,
J. London Math. Soc. (2)
68 (2003),
no. 1, 193205. arXiv: math.OA/0012053. [Abstract].

[13]

S. Walters
Kgroups and classification of simple quotients of
group C*algebras of certain discrete 5dimensional nilpotent groups,
Pacific J. Math.
202 (2002),
no. 2, 491509. [Abstract].
(Available in PJM achieves.)

[12]

S. Walters
Ktheory of non commutative spheres arising from
the Fourier automorphism,
Canad. J. Math. 53 (2001), no. 3, 631672. [Abstract].
(Available in PS form at the CMS
online publications.)

[11]

P. Milnes,
and S. Walters
Discrete Cocompact
subgroups of the 4dimensional nilpotent connected Lie group and their
group C*algebras,
J. Math. Analysis Appl. 253 (2001), no. 1,
224242. [Abstract]  PDF form.

[10]

S. Walters
Chern characters of
Fourier modules,
Canad. J. Math. 52 (2000), no. 3, 633672. [Abstract].
(Available in pdf/ps form
at the CMS online publications.)

[9]

P. Milnes and S. Walters
C*Algebras characterized by ergodic
actions of the ntorus,
Bull. London Math. Soc.
32 (2000),
no. 4, 465470. (Available on this list.)

[8]

S. Walters
On the irrational quartic
algebra,
C. R. Math. Rep. Acad. Sci.
Canada 21
(1999), no. 3, 9196.

[7]

P. Milnes and S. Walters
Simple infinite dimensional quotients of C*(G) for
discrete 5dimensional nilpotent groups G,
Illinois J. Math. 41 (1997), no. 2, 315340. [Abstract]; MR 98h:22006.

[6]

S. G. Walters
Inductive limit automorphisms
of the irrational rotation algebra,
Comm.
Math. Phys.171 (1995), no. 2,
365381. [Abstract]; MR
97a:46088.
(Dedicated to George Elliott on his 50th.)

[5]

S. G. Walters
Projective modules over the noncommutative
sphere,
J. London Math. Soc.
(2) 51
(1995), no. 3, 589602. [Abstract]; MR 96m:46135

[4]

S. Walters
Strong Morita equivalence for the quasirotation
C*algebras,
J. Operator Theory
31 (1994),
no. 2, 327349. [Abstract]; MR
96m:46134

[3]

P. Milnes and S. Walters
Simple quotients of the group C*algebra of a
discrete 4dimensional nilpotent group,
Houston J. Math. 19 (1993), no. 4, 615636. [Abstract] (11K); MR 94k:46119

[2]

S. Walters
Quasirotation C*algebras,
Pacific J. Math.
148 (1991),
no. 1, 131151.

[1]

S. Walters
A Furstenberg transformation of the 2torus
without quasidiscrete spectrum,
Canad. Math. Bull.
33 (1990),
no. 3, 316322.
